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Abstract 

We address the problem of training relaxation labeling processes, a popular class of parallel iterative procedures widely 
employed in pattern recognition and computer vision. The approach discussed here is entirely based on a theory of 
consistency developed by Hummel and Zucker, and contrasts with a recently introduced leaming strategy which can 
be regarded as heteroassociative, i.e., what is actually learned is the association between patterns rather than the patterns 
themselves. The proposed learning model is instead autoassociative and involves making a set of training patterns consistent, 
in the sense rigorously defined by Hummel and Zucker; this implies that they become local attractors of the relaxation 
labeling dynamical system. The learning problem is formulated in terms of solving a system of linear inequalities, and a 
straightforward iterative algorithm is presented to accomplish this. The attractive feature of this algorithm is that it solves 
the system when it admits a solution, and automatically yields the best approximation solution when this is not the case. 
The learning model described here allows one to view the relaxation labeling process as a kind of asymmetric associative 
memory, the effectiveness of which is demonstrated experimentally. © 1997 Elsevier Science B.V. 

Keywords: Learning; Relaxation labeling; Associative memories; Consistency; Neural networks; 

1. I n t r o d u c t i o n  

Relaxation labeling processes are a broad class of 
parallel cooperative procedures widely employed in 
computer vision and pattern recognition. They were 
pioneered by Rosenfeld, Hummel and Zucker (1976) 
in the mid-1970s and have since found applications in 
a variety of  different problems ( see (Kittler and Illing- 
worth, 1985) for a review). The basic idea behind 
relaxation labeling is that complex, global computa- 
tions can be done in a simple cooperative network of 
locally-interacting processing units, each representing 
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a specific hypothesis. This is commonly believed to be 
the style of computation actually implemented in the 
early stages of biological visual systems (e.g. (Bal- 
lard et al., 1983) ). Due to the timing restrictions im- 
posed by neuronal response, Marr was skeptical about 
this hypothesis. He raised the question that relaxation 
procedures "take too long and demand too much neu- 
ral hardware to be implemented in any direct way" 
(Marr, 1982, p. 107). Recent experimental studies, 
however, contradict Marr's view, by showing that very 
few relaxation iterations are typically needed to ar- 
rive at a global "consistent" interpretation, provided 
that the initial processing stages are accurate enough 
(Zucker et al., 1988; Iverson, 1994). 

One of the most important problems that arises in 
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applying a relaxation labeling algorithm to a practical 
task concerns finding a suitable set of compatibility 
coefficients. These are real-valued quantities that ex- 
press the degree of agreement between different hy- 
potheses, and effectively embody all the knowledge 
about the problem at hand. Traditional interpretations 
of compatibility coefficients have been in terms of 
statistical measures such as, for example, correlation 
(Rosenfeld et al., 1976) or mutual information (Pe- 
leg and Rosenfeld, 1978). The work by Peleg (1980) 
and Kittler and Hancock (1989) also supports this 
view. They developed new relaxation labeling algo- 
rithms, and provided probabilistic interpretations for 
the standard Rosenfeld et al.'s scheme, on the grounds 
of simple Bayesian arguments. The approach naturally 
leads to a statistical-based choice of the compatibility 
model. As pointed out by Hummel and Zucker (1983), 
even if Bayesian analysis provides much insight into 
the understanding of relaxation labeling algorithms, 
the approach is capable of accounting for at most one 
iteration of the process, and to understand its iterative 
behavior one has necessarily to resort to some approx- 
imation. Recently, however, the behavior of these re- 
laxation labeling procedures has begun to be clarified, 
thanks to the work of Stoddart et al. (1995) who have 
uncovered certain interesting dynamical properties of 
the Kittler-Hancock probabilistic scheme. 

In a recent work, we have tackled the problem from 
a radically different perspective (Pelillo and Refice, 
1994). Instead of deriving the compatibilities of re- 
laxation labeling by making recourse to probabilis- 
tic analysis, we try to learn them from a set of la- 
beled data, in exactly the same way that neural net- 
works do. Besides the obvious benefits of employing 
an automated procedure which is capable of deter- 
mining the compatibility model in an "optimal" man- 
ner, the learning-based approach contributes to make 
the fields of relaxation labeling and neural networks 
closer. It also strengthens the biological plausibility of 
relaxation labeling processes as a mechanism of vi- 
sual computation actually implemented in the brain, 
a hypothesis that has been forcefully put forward by 
Zucker and his collaborators (Zucker et al., 1989). 

The approach described in (Pelillo and Refice, 
1994) consists of deriving the compatibility strengths 
in such a way that the "distance" between what the 
relaxation process produces upon presentation of 
an input pattern and what is expected to produce 

be as small as possible. Technically, this amounts 
to minimizing a certain cost function in the space 
of compatibility coefficients, a problem that can be 
solved by either classical gradient methods or more 
attractive global optimization procedures like genetic 
algorithms, as described in (Pelillo et al., 1995). The 
input to the learning algorithm in this case is a set 
of training exemplars in the form of ordered pairs 
of objects and labels. The objects are given as input 
to a local measurement process whose output will 
then initialize the relaxation process, while the labels 
represent the desired final responses. Borrowing the 
terminology from the neural network domain (Hertz 
et al., 1991 ), this can be regarded as a heteroasso- 
ciative approach to learning, which means that what 
is actually learned (or stored) is the association be- 
tween pairs of patterns, not the patterns themselves. 
A potential drawback of this kind of approach is that 
the derived compatibility coefficients do depend on 
the initial local measurement process. In some cases 
this may be advantageous, because in this way we 
effectively provide the learning algorithm with more 
problem-dependent information. However, in some 
circumstances it may result in poor generalization 
performance. This may be true when the initial lo- 
cal process is particularly noisy, thereby introducing 
noise in the learning process. 

In this paper, we develop what may be called an 
autoassociative approach to the relaxation labeling 
learning task which, as a by-product, avoids this kind 
of problems. In this case, the learning problem con- 
sists of making a set of training patterns consistent, 
in the rigorous sense defined by Hummel and Zucker 
(1983). This is equivalent to saying that the learning 
data, viewed as points in state space, become attrac- 
tive fixed points for the relaxation labeling dynamical 
system. We shall see that this amounts to solving a 
(sparse) system of linear inequalities, and shall de- 
scribe an interesting iterative procedure to accomplish 
this, which has the distinguished feature of being able 
to always produce an "optimal" solution (in the sense 
of Chebyshev) when no exact solutions exist. It will 
also be seen how the proposed learning approach al- 
lows us to develop a powerful asymmetric associa- 
tive memory model based on the dynamical properties 
of the relaxation labeling process. The validity of the 
model is confirmed experimentally. 

We mention that essentially the same idea to de- 
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rive the compatibility coefficients of relaxation label- 
ing was succinctly suggested by Hummel (1983). As 
a matter of fact, he did not suggest any practical way 
to accomplish this, and it seems that he did not recog- 
nize the potential applications of the model. 

The outline of the paper is as follows. In Section 2, 
we introduce relaxation labeling algorithms and some 
of their fundamental properties. In Section 3, we for- 
mulate the learning problem as a system of linear in- 
equalities, and in the subsequent section we describe 
an algorithm for solving it. Section 5 discusses the 
associative-memory application and presents some ex- 
perimental results. In Section 6, we draw our conclu- 
sions. 

which is a linear convex set of ]l~ nm. Every vertex of/C 
represents an unambiguous labeling assignment which 
assigns exactly one label to each object. The set of 
these labelings will be denoted by/C*: 

/C* ={/5 E / C : p i ( A ) = 0 o r  I, i = 1  . . . . .  n, A E A ) .  

Hummel and Zucker (1983) developed a general 
theory of consistency for the labeling problem which 
is the basis of the work reported here. The entire de- 
velopment of the theory is basically a generalization of 
the notion of consistency for unambiguous labelings 
which is more easily understood. Consider a labeling 
/5 E/C. The degree of agreement between the hypoth- 
esis that bi is labeled with label a and the context can 
be quantified by a linear support function 

2. Relaxation labeling processes and their 
properties 

Relaxation labeling processes were developed to 
solve the so-called (continuous) labeling problem, 
where one has to assign labels to objects so as to 
satisfy a set of domain-specific constraints. Let B = 
{bl . . . . .  bn} and A = { , ~ 1  . . . . .  Am} denote respec- 
tively the set of objects and the set of labels of the 
problem at hand. Moreover, let the constraints be quan- 
titatively expressed in terms of a four-dimensional 
matrix of real-valued compatibility coefficients R = 
{rij(~.,tlz)}; the component rij(~.,Iz) m e a s u r e s  the 
strength of compatibility between the two hypotheses 
"A is on object bi" and "/z is on object bj". High values 
mean compatibility while low values mean incompat- 
ibility. 

Let pi (~) represent the degree of confidence of the 
hypothesis "label A is on object bi". It is assumed 
that pi(,D >>- 0 and ~ i t p i ( h )  = 1, so that the m- 
dimensional vector /5i = (pi(Al) . . . . .  pn(Am))T can 
be considered as the probability distribution of labels 
for object bi. By putting together the/si's we obtain 
a weighted labeling assignment for the objects of B 
that will be denoted by/5, and will be conveniently 
considered as an n x m matrix. We will find it useful to 
introduce the space of weighted labeling assignments: 

LS= {p E ~"m : p~(A) ~>0, i=  1 . . . . .  n, A E A  

and E p i ( A )  = 1, i= 1 . . . . .  n},  
it 

qi(A;p) = E E rij(A,/.*)pj (/-*). (1) 
J 

Now, let/5 E K~* be an unambiguous labeling assign- 
ment, and let A(i) denote the label assigned to bi by/5 
(i.e., pi(A(i) ) = 1 ). It seems reasonable to say that/~ 
is consistent if and only if the assigned label of each 
object receives the greatest support at that object. This 
corresponds to having 

qi(A;p) ~< q~(A(i);p), i =  1 . . . . .  n, A E A, (2) 

or, equivalently, ~--~a vi( h)qi( A;/5) ~ ~-~a Pi( A) qi( A; 
/5), for all ~ E/C*. 

By analogy, a weighted labeling assignment/~ E /C 
is said to be consistent provided that 

vi(a)q~(a;p) <~ Ep i (A)q i (A; /5 ) ,  
it it 

i = 1  . . . . .  n, (3) 

for all ~ E /C. Furthermore, if strict inequalities hold 
in (3), for all ~ 4: /5, then p is said to be strictly 
consistent. It can be easily shown that for unambigu- 
ous labelings conditions (2) and (3) are equivalent 
(Hummel and Zucker, 1983). After defining the no- 
tion of consistency and proving some useful charac- 
terizations, Hummel and Zucker showed that when the 
compatibility matrix happens to be symmetric (i.e., 
rij(h, I~) = rji(Iz, A) ), then a sufficient condition for 
a labeling/5 to be consistent is that it is a local min- 
imum of the following "energy" function which is a 
measure of labeling's (in)consistency 



M. Pelillo, A.M. Fanelli/Pattern Recognition Letters 18 (1997) 3-12 

A(p)  = - ~ ~ rij( A, #)pi(  A)pj(#) .  
i,A j, lz 

(4) originally proven by Elfving and Eklundh (1982) in 
a slightly simplified form. 

A relaxation labeling process takes as input an initial 
labeling assignment p(0) E KS and iteratively adjusts 
it taking into account the compatibility model, using 
an updating formula of the form 

p(t+l) = f(p<t), ~l~t) ), (5) 

where t is the time index. The process evolves until (at 
least in theory) a fixed point is reached, which means 
that p(t+l) = p(t). In practice, it is customary to stop 
the process when the distance between two successive 
labelings becomes negligible, or after a predetermined 
number of iterations. 

The most popular form for the function f ,  which 
was also used in the experiments reported later in this 
work, is as follows: 

p~t+l) (A) = P~t)(A)q~t)(A) (6) 
E ~  pit)(#)q~t)(/z) '  

provided that the compatibility coefficients are non- 
negative. This corresponds to the original nonlin- 
ear scheme developed heuristically by Rosenfeld et 
al. (1976). In the following, the relaxation algo- 
rithm will be best viewed as a continuous mapping 
7" of the assignment space KS onto itself. It starts 
out with p(0) and iteratively produces a sequence 
of points p(0) p(l) ,p(2) . . . .  E KS, where p(t+l) = 
7"(p~o), t /> 0. 

Recently it has been shown that despite its com- 
pletely heuristic derivation, the original relaxation 
scheme (6) possesses a number of interesting prop- 
erties (Pelillo, 1994). Firstly, when the compatibility 
matrix R is symmetric then A turns out to be a (strict) 
Liapunov function for the process, which means that 
it is monotonically decreasing along nonconstant tra- 
jectories. Secondly, and even more interestingly, it 
can be proven that strictly consistent labelings act as 
local attractors for the dynamical system defined by 
(6),  whether or not the matrix R happens to be sym- 
metric. This means that when started sufficiently close 
to a strictly consistent labeling ~, the relaxation pro- 
cess will tend to ~ as time increases. 2 This property 
is formalized in the following theorem, which was 

2 See, e.g., (Luenberger, 1979) for an introduction to dynamical 
systems. 

Theorem 1. Let ~ E KS* be a strictly consistent la- 
beling. Then ~ is an asymptotically stable equilibrium 
point (and hence a local attractor) for  the relaxation 
labeling scheme T defined in formula (6).  

Proof. To prove the theorem we have to show that ~ is 
a stable equilibrium point, and also a local attractor for 
T. The latter condition was earlier proven in (Elfving 
and Eklundh, 1982, Theorem 10) by showing that the 
spectral radius of the Jacobian of 7" evaluated at any 
strictly consistent labeling is less than 1. The fact that 
is a local attractor follows therefore immediately from 
a well-known result by Ostrowski (1966, Theorem 
22.1 ) (we do not reproduce the proof here and refer 
to the original paper for technical details). It remains 
thus to see that ~ is stable. Formally, this is expressed 
by the following condition: for any e > 0 there exists 
a S > 0 such that liP-~11 < s implies 117"'(P) - ~11 < 
e for all t >~ 0, where T t denotes the tth iterate of 
T, i.e., T ° ( p )  = p and 7-t(p) = 7 - ( T t - l ( p ) )  for 
t /> 1. First of all, since ~ is a local attractor for 7-, 
there must exist a S' > 0 such that l i m t ~  7-t(p) = 
whenever liP-~11 < s ' .  Now, let e > 0 be an arbitrary 
positive constant. There exists a nonnegative integer 
to such that for all t > to we have ]lT-t(p) - ~11 < 
e whenever lip - ~11 < s' .  Furthermore, since 7- is 
continuous, so is T t for all t t> 0. This means that, for 
any choice of t, there exists a St > 0 such that lip - 
~11 < s ,  implies [[Tt(p) - D ( ~ ) I I  = l i D ( p )  -~11 < 
e (recall that ~ is a fixed point for 7-). Therefore, by 
setting S = min{S', 81 . . . . .  St0} the condition for the 
stability of  ~ follows immediately, thereby proving the 
theorem. [] 

This is the analog to the fundamental local con- 
vergence result that Hummel and Zucker proved for 
a different relaxation algorithm (which makes use 
of a computationally expensive projection operator) 
that turns out to be an approximation of the stan- 
dard Rosenfeld et al.'s scheme (Hummel and Zucker, 
1983, Theorem 9.1). Its interestingness stems essen- 
tially from the fact that no restriction on the structure 
of the compatibility matrix is imposed. This result is 
the basis for the autoassociative learning approach de- 
scribed in this paper. 
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3. Problem formulation System ( 11 ) can be compactly represented as 

The learning approach described in this paper is 
based on the assumption that we have access to a set 
of learning patterns 

-~ = {s c(') . . . . .  so(P) } ,  (7) 

where each ~:(r), 3' = 1 . . . . .  P, is simply an ordered 
list of labels, i.e., 

?¢7) = (8)  
I 2 

with (}7) E A, for all i = 1 . . . . .  n. For each learning 
pattern s c(~'), consider the corresponding unambiguous 
labeling assignment/~(((7)) E /C* C R "m, which is 
just an alternative (but equivalent) representation of 
((r): 

1, if A = so} 7), 

Pi(A;sc(7))= 0, otherwise, 

a l l i = l  . . . . .  n, A E A .  (9) 

The key idea behind the proposed learning approach 
follows from the observation that since the learning 
patterns are instances of the problem we intend to 
solve, they must be "consistent" with the problem's 
constraints. This naturally suggests the following strat- 
egy: find a compatibility matrix R so that the learning 
patterns become consistent (in the following, we will 
find it useful to "linearize" the compatibility matrix 
and consider it as an n2m2-dimensional column vector 
F). Indeed we want the learning patterns to be strictly 
consistent. In fact, from the preceding section (Theo- 
rem 1 ) we know that if started in the vicinity of one of 
them, the relaxation process will eventually converge 
toward it. 

For the labeling #(~(7)),  y = 1 . . . . .  P, to be strictly 
consistent the following relation must hold: 

q i (A;#(((7)))  < qi(sc~z');/~(sc(z'))) (10) 

for all A ~ sc~ 7) and i = 1 . . . . .  n. Simple algebraic 
manipulations yield 

r i j ( . ~ , ~ Y ) )  -- ~ -  r t-(Y) r (Y)x  Z. .r i j~gi  ,gj ) < 0 ,  (11) 
) J 

which is a system of Pn(m - 1 ) linear inequalities in 
the n2m 2 unknowns {r0.(X,/z)}. 

CF < 0, (12) 

where C is the Pn(m - 1) x n2m 2 matrix defined as 

C ( y , i , A ; j , k , / z ,  rl) 

+1, i f j = i ,  / z=A,  r/=sc~ 7), 

- 1 ,  i f j = i ,  /z bj , 71= 

0, otherwise 

(for notational convenience we use a three-component 
index for the rows and a four-component index for the 
columns), ~ is the unknown compatibility vector, and 
0 is the null vector. 

In practical applications, it is customary when solv- 
ing systems of linear inequalities to introduce a "mar- 
gin" (Duda and Hart, 1973 ), which also ensures larger 
basins of attraction (Forrest, 1988). Accordingly, our 
system is rewritten as 

~ - " r  tA,/:O')~ - Z r i j ( ( ~ Y )  ' (7) Z.~ ij, ~j , (13) 
J J 

or, equivalently, 

C f  <<. t e l  (14) 

where K is some predetermined negative constant (the 
margin), and i is the unity vector. 

4. Solving the system: the Eremin algorithm 

Once that the autoassociative learning problem has 
been cast in terms of solving a system of linear in- 
equalities, the next step involves choosing a particular 
algorithm to solve it. Many algorithms have been de- 
veloped for solving systems of linear inequalities. The 
most immediate approach (also suggested in (Hum- 
mel, 1983) ) is to make use of the well-known simplex 
algorithm. Another popular method is the relaxation 
method developed by Agmon (1954) (not to be con- 
fused with our relaxation labeling process). A com- 
mon characteristic of these methods, however, is that 
they require the system to be compatible, i.e., to ad- 
mit at least a solution. Alternative procedures, like the 
one developed by Ho and Kashyap (1965) are able 
to automatically determine the solution of a system if 



M. Pelillo, A.M. Fanelli/Pattern Recognition Letters 18 (1997) 3-12 

there is one, and just to report that no solutions exist 
when this is not the case. 

Even if in certain restricted circumstances our sys- 
tem can be proven to have a solution, in general this 
is certainly not the case. All these methods are there- 
fore inappropriate in our case, for when the system is 
incompatible we would like at least to get a "good" 
approximation solution of it. Fortunately, this kind of 
algorithm is available. This was proposed in a rather 
obscure paper by the Russian mathematician Eremin 
in the early 1960s (Eremin, 1962). The attractive fea- 
ture of Eremin's method (which is a simple variant 
of Agmon's relaxation algorithm) is that it does solve 
the system when it happens to be compatible, and 
yields the "best" approximation solution (in the sense 
of Chebyshev) when this is not the case. The major 
point is that it does not require any a priori knowledge 
about the system's compatibility, being able to handle 
the two cases in a completely automatic manner. 

Eremin's method applies to systems of the general 
form 

Z ajixi ~ bj.  
i 

In our description, however, we will tailor it to our 
problem (13), or its equivalent formulation (14). Let 

E I1~ Fro2 be an arbitrary compatibility vector, and put 

A(~) = 

max ~ ~ r i j ( A , ~ J  r) ) Z rij(~} ~'), (~') } - ~) ) - ~ .  
y,i,,~ [. J J 

Moreover, put 

d(?)  = [ A(?), if A(?) />0, 

/ 0, otherwise, 

(15) 

(16) 

which is a continuous and convex function of f. 
Eremin called the number e0 = mined(?) the de- 
fect of system (13), which can be interpreted as the 
smallest e for which the system 

Z r..:A, ~(~)) - Z -  "~(') r(~), t j t  bj rijkgi , g j  ! - K <~ e (17) 
J J 

is compatible. Clearly if e0 = 0 then the original sys- 
tem (13) is compatible. When the system is incompat- 

ible (i.e., e0 > 0) the number e0 is called the Cheby- 
shev deviation of the system and any point ? satisfying 
the system 

Z r i j ( A , ~ ' ) )  - Zrij(~!~'), ,oj/~!Y)) - K ~< eo (18) 
J J 

will be called the point of its Chebyshev ap- 
proximation. Furthermore, a sequence of  points 
f0, ri ,  r2 . . . .  E R Fro2 will be called solving for the 
system (13) if it converges to some solution of the 
system (18). 

Now, let {Ak} be a sequence of positive numbers 
such that Ak ~ 0 as k ~ co, and Y~'~k/~k = +oc (e.g., 
& = 1 / ( k +  1)), and let r0 be an arbitrary initial 
point. Starting from ~0 Eremin's algorithm produces 
a sequence of points {?k} according to the following 
scheme: 

tZk+l = rk -- /~k+ld ( rk )C(yk ,  ik, Ak; .)T, (19) 

where C (yk, ik, Ak ;. ) is the row of the coefficient ma- 
trix C corresponding to the equation for which the 
value d(~k) is attained (if  more than one such equa- 
tions exist, that with the least index is taken). Eremin 
(1962) proved the following result. 

Theorem 2 (Eremin, 1962). The sequence {rk} de- 
fined in equation (19) is solving for the system (13). 

In other words, the preceding theorem states that 
if the system (13) happens to be compatible, then 
the sequence {?k} will converge toward one of its 
solutions. Otherwise, it will converge toward a point 
of its Chebyshev approximation. 

To conclude this section we need to clarify a final 
point. If we are to use the relaxation labeling algorithm 
defined in formula (6),  then we need the compatibil- 
ity coefficients to be nonnegative. Note, however, that 
there is no guarantee that the solution provided by the 
Eremin procedure will satisfy this constraint. A first 
possible approach to solve this problem is to add a set 
of "feasibility" constraints to our system (13). In our 
case, however, it is more convenient to initially derive 
arbitrary compatibility coefficients and then to scale 
them linearly so as to make them nonnegative (i.e., by 
simply adding the smallest negative coefficient). It can 
be readily seen that this has no effect on the structure 
of the space of consistent labelings (Pelillo, 1994). 



M. PeliUo, A.M. FaneUi/Pattern Recognition Letters 18 (1997) 3-12 

5. An application: building an asymmetric 
associative memory 

Following the seminal work of Hopfield (1982), 
there has been an increasing interest in the develop- 
ment of  neural network models of  associative memory 
(see e.g. (Hertz et al., 1991 )) .  The basic idea behind 
this approach is that memory patterns can be stored 
as attractive fixed points of the system so that when 
started in their vicinity the memory will eventually "re- 
call" the nearest one. Hopfield's most valuable contri- 
bution was to show that certain highly-interconnected 
networks of neuron-like processing elements possess 
an energy function that drives their dynamical behav- 
ior toward low-energy states, provided that the con- 
nection weights between units are symmetric. Despite 
the manifested inspiration from neuroscience, how- 
ever, the Hopfield model turns out to be unsatisfactory 
from a biological standpoint, because of the (essen- 
tial) requirement that neurons be connected in a sym- 
metrical fashion. 

The autoassociative learning model discussed in this 
paper naturally leads us to view the relaxation labeling 
process as a novel kind of multi-valued asymmetric 
associative memory. This consists of an n x m densely 
interconnected relaxation labeling network, where n 
is the word's length and m is the number of possible 
values at each site. The connection strengths between 
units are determined by the compatibility matrix R, 
i.e., rij (A, IX) is the weight on the connection between 
units (i, A) and (j, IX). The unit indexed ( i , a )  up- 
dates its own state according to formula (6),  and its 
activation value Pi(,~) can therefore be thought of as 
the probability that A be the correct value for word's 
site i. From Theorem 1, we know that if started in the 
vicinity of  a strictly consistent labeling, the network 
will eventually converge toward it, whether or not the 
connection strengths are symmetric. I f  the resulting 
labeling corresponds to a memory pattern, we say that 
the memory has "recalled" that pattern. The learning 
algorithm described in the previous section can there- 
fore naturally be employed as a means to "store" a 
given set of patterns in the memory. 

III 

Ill 

5.1. Experimental results 

To assess the validity of this memory model some 
experiments were conducted aimed at testing its error- 

I 
I III 
I 
IIII 
I 

Fig. 1. Training set used in the experiments. 

correction capabilities as well as evaluating its storage 
capacity. We concentrated on binary memories, i.e., 
A = {0, 1 }. Note that, contrary to tradition, in our 
model each memory site has two computational units 
associated with it, namely one for the value "0" and 
the other for the "1". It is interesting to observe that 
this kind of representation, which involves "opposing 
pairs", is indeed the one preferred by many biological 
perceptual systems. Retinal ganglion cells with on- 
and off-center receptive fields are perhaps the most 
common example, but examples from other sensory 
systems abound (Hubel, 1988). 

The learning set used in this study was taken from a 
recent paper by Zhuang et al. (1994) and consists of 
ten binary digits on a 5x5  matrix, as shown in Fig. 1. 
The training was carried out using the Eremin proce- 
dure described in the previous section, using different 
margin values K = - 1 0 , - 2 0 , - 3 0 , - 5 0 , -  100. 

To experimentally test that the stored patterns had 
finite attraction basins, ten noisy versions of the cor- 
responding unambiguous labelings were generated for 
each of them, using a continuous Gaussian noise with 
mean 0 and variance 0.1 (this was followed by a suc- 
cessive normalization step to ensure that the noisy la- 
belings still belonged to/C). These 100 labelings were 
later given as input to the relaxation network which 
in the 100% of the cases quickly recalled the original 
ones. 

Later, the error-correction capability of the model 
was tested. For each memory pattern, ten perturbed 
versions were generated by randomly flipping exactly 
d bits (for varying d),  and the corresponding unam- 
biguous labelings were obtained. In addition, since 
unambiguous labelings turn out to be fixed points for 
the relaxation scheme (6),  a further Gaussian noise 
was inflicted as described before. The relaxation net- 
work was then allowed to run for (at most) 1,000 it- 
erations, and the resulting (weighted) labelings were 
converted into binary patterns by a simple maxima se- 
lection criterion. The resulting binary patterns were 
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then compared with the original ones, and a s u c c e s s  

was recorded when a perfect match was achieved. 
Fig. 2 shows the percentage of successful recalls as 
a function of d, for various values of the margin K. 
As can be seen, there is no significant difference in 
performance, but it seems that there is no advantage 
in going beyond a certain limit which, in our case, 
may be taken as K = --50. Our results compare fa- 
vorably with those obtained on the same training set 
by Zhuang et al. (1994), who developed a sophisti- 
cated learning algorithm for Hopfield memories (cf. 
their Fig. 4(a) ). Their results, in turn, were by far su- 
perior to those obtained using the standard Hebb rule 
originally introduced by Hopfield (1982). 

We also experimentally estimated the number of 
spurious patterns in the proposed memory. We gener- 
ated a hundred 25-bit random vectors and gave each 
of them as input to the relaxation labeling network. 
The converged patterns were then compared with the 
memory vectors shown in Fig. 1 and those not con- 
tained in the training set were considered as spuri- 
ous. Fig. 3 shows the percentage of such patterns for 
the various margin values employed. Again, we note 
how decreasing the margin K below - 5 0  results in 
a deterioration of results. Unfortunately, we cannot 
compare in a fair manner our results with those pre- 
sented in (Zhuang et al., 1994) since they considered 
a converged pattern as a spurious one if it differed 
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Fig. 4. Storage capacity of the relaxation labeling associative memory. 

not only from the memory vectors ~(Y~, but also from 
- s  c(y), for y = 1 . . . . .  P (they considered networks 
with - 1 / + 1 states); storing a pattern s c in a Hopfield 
network, in fact, implies storing also - ( .  They found 
about 20% spurious memories, a figure that is com- 
parable to our best one (corresponding to K = --50) 
if we take into account the criterion they employed 
to obtain it. Hebb-trained Hopfield networks produced 
instead a percentage of spurious memories very close 
to 100% (Zhuang et al., 1994). 

Our next goal was to estimate the storage capacity 
of the proposed memory. To do so, the following ex- 
periment was conducted. We fixed the word's length 
at n = 10 and tried to store s desired memories, for 
increasing values of s. In this case, only the margin 
value K = - 5 0  was used. For each value of s, 100 
such tests were performed each involving exactly s 
randomly generated patterns. After the learning phase, 
we tested if the desired memories were made strictly 
consistent by the learning algorithm. As seen, this is 
equivalent to saying that the patterns were stored into 
the memory. A test was considered successful if the 
percentage of stored memories was greater than or 
equal to 90%. We then calculated the percentage of 
successful tests for each value of s, and Fig. 4 shows 
the results obtained. 

From this study we can say that the capacity of 
our model is approximately 1.2n. This figure is by far 
superior to the capacity of Hebb-trained associative 
memories, which is 0.15n (Hopfield, 1982), and is 
also substantially larger than the estimated capacity 

of the powerful model developed by Zhuang et al. 
(1994), which was 0.8n for n = 10. 3 These results 
seem also to be superior to those obtainable with the 
asymmetric memory model described in (Michel and 
Farrell, 1990), which is capable of effectively storing 
a number of (linearly independent) patterns of the 
order of 0.5n. 

6. C o n c l u s i o n s  

A crucial problem in applying a relaxation label- 
ing algorithm to a practical task is to derive the so- 
called compatibility coefficients, which embody all the 
knowledge about the problem being solved. In anal- 
ogy with neural network models, the idea of learning 
has recently been introduced into the relaxation label- 
ing domain. This involves deriving the compatibility 
coefficients by means of an incremental algorithm, in 
such way that the performance of the relaxation pro- 
cess gradually improves over time. Borrowing the ter- 
minology from the neural network field, we have dis- 
tinguished between heteroassociative and autoassocia- 
five learning procedures. In the first case, the task is to 
learn an association between two different patterns of 
stimuli. Our previous learning approach (Pelillo and 
Refice, 1994; Pelillo et al., 1995) falls into this class. 
One potential drawback of this approach, is that it is 
dependent on the initial local measurements, and this 

3 In their experiments, however, they performed 1,000 tests for 
each value of s. 
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may potent ia l ly  result  in poor  general izat ion perfor- 
mance.  

In this paper, we have proposed a new, autoassocia- 

tive a lgor i thm to train relaxation label ing processes. 
The approach is based on a formal theory of  consis- 

tency developed in a landmark  paper by Hummel  and 
Zucker  (1983) .  After  in t roducing  the basic relaxation 
label ing formulas and discussing their fundamenta l  

dynamica l  properties,  we have formulated the autoas- 

sociative learning problem as one  of  solving a system 

of  l inear  inequali t ies.  A m o n g  the many  exist ing al- 

gori thms for so lv ing  such systems we have chosen a 
relaxat ion-style  procedure developed by the Russian 
mathemat ic ian  Eremin.  This has the attractive feature 

of  be ing able to automatical ly  yield the best approx- 
imat ion solut ion when  no exact solut ion exists. The 
proposed learning a lgor i thm has been tested over an 
associative memory  application,  where memory  pat- 
terns are stored as attractive fixed points  o f  the re- 
laxation label ing dynamica l  system. The results ob- 

tained indicate  that our  model  exhibits error-correction 
performance  that are competi t ive with sophisticated 
Hopfield-style memories ,  and turns out  to have a sub- 

stantial ly higher  storage capacity, 
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